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The linear stability of a compressible inviscid axisymmetric and rotating columnar
flow of a prefect gas in a finite-length straight circular pipe is investigated. This
work extends a previous analysis to include the influence of Mach number on the
flow dynamics. A well-posed model of the unsteady motion of a swirling flow, with
inlet and outlet conditions that may reflect the physical situation, is formulated. The
linearized equations of motion for the evolution of infinitesimal axially symmetric
disturbances are derived. A general mode of disturbance, that is not limited to the
axial-Fourier mode, is introduced and an eigenvalue problem is developed. It is
found that a neutral mode of disturbance exists at ‘the critical swirl ratio for a
compressible vortex flow’. The flow changes its stability characteristics as the swirl
ratio increases across this critical level. When the swirl ratio is below the critical
level (supercritical flow), an asymptotically stable mode is found and, when it is
above the critical level (subcritical flow), an unstable mode of disturbance develops.
This result cannot be predicted by any of the previous stability criteria. When the
characteristic Mach number of the base flow tends to zero, the results are the same as
found for incompressible swirling flows in pipes. The growth rate ratio is positive for
all Mach numbers, but decreases as Mach number is increased. This ratio vanishes
at the limit Mach number at which the critical swirl tends to infinity. The present
results also demonstrate that the axisymmetric breakdown of high-Reynolds-number
compressible vortex flows may be delayed to higher swirl ratios with the increase of
the incoming flow Mach number.

1. Introduction
The stability of compressible swirling flows is an important problem for a variety

of technological applications such as the aerodynamics of slender wings operating
at high angles of incidence, combustion chambers, nozzles, and other high-speed
flow devices where swirl has a dominant influence. The study of this problem may
also shed light on complicated stability and breakdown phenomena that appear in
numerous problems of geophysical and meteorological significance. In all of these
cases, the flow Mach number is not small and may reach values of 0.2 to 0.7, and the
effect of compressibility is an essential part of the flow dynamics and influences the
conditions for the appearance of instabilities and transition (breakdown) phenomena.

Vortex stability and breakdown is a classical topic in fluid dynamics that was
extensively studied for over 100 years. Reviews of this topic include the reports
by Leibovich (1984), Escudier (1988), Delery (1994), Ash & Khorrami (1995), and
Althaus, Bruecker & Weimer (1995). A variety of vortex stability criteria were



26 Z. Rusak and J. H. Lee

developed over the years, among them are the classical criteria of Rayleigh (1916)
(later strengthened by Synge 1933), Ludwieg (1960), Howard & Gupta (1962), Lessen,
Singh & Paillet (1974), and Leibovich & Stewartson (1983). These reviews show that
all of the studies on this topic focused only on the incompressible flow problem.
Also, they all concentrated on vortex flows in an infinite axial domain, described the
disturbances by Fourier periodic modes in the axial direction, and showed that as the
swirl is increased the flow becomes neutrally stable. This may lead to the conclusion
that stability may not be directly related to the development of breakdown phenomena
in vortex flows (Leibovich 1984). Moreover, none of the previous stability analyses
investigated the effect of compressibility on the flow stability and dynamics.

Only a few numerical simulations by Melville (1996), Tromp & Beran (1996, 1997)
and Herrada, Prez-Saborid & Barrero (2000) included the effect of flow Mach number
on the appearance of vortex breakdown. Note that all these simulations were limited
to compressible flows of perfect gases with relatively low Reynolds numbers (1000
or less) and therefore apply to only swirling flows in micro-scale pipes where viscous
dissipation may dominate. Melville (1996) and Herrada et al. (2000) showed that
increasing Mach number stabilizes the vortex flow and delays the appearance of
breakdown to a higher level of swirl ratio. To the best of our knowledge, there is no
computation of compressible vortex flows in pipes at realistic high Reynolds numbers
(106 or more). Also, to the best of our knowledge, there are no detailed experimental
studies of compressible vortices that may indicate the flow behaviour.

A recent set of papers by Wang & Rusak (1996a, b, 1997a, b), Rusak, Judd &
Wang (1997), Rusak, Wang & Whiting (1998a), Rusak, Whiting & Wang (1998b),
Rusak (1998, 2000) and Rusak & Judd (2001) studied the stability and dynamics
of an incompressible and axisymmetric swirling flow in a finite-length long circular
pipe. Their physical model assumed that the flow entering the pipe is generated
by a vortex generator. Under a continuous and steady operation of the generator,
the same profiles of the axial and circumferential velocities and of the azimuthal
vorticity are imposed at all time at some cross-section downstream of the vortex
generator, no matter how the flow evolves in the pipe. This cross-section is denoted
as the pipe inlet. It is also assumed that the inlet state has a degree of freedom
to develop a radial velocity to reflect the upstream influence by disturbances in
the pipe that have the tendency to cast such an influence. At the pipe outlet a
fully developed columnar state was considered. These conditions may represent the
physical situations found in the experimental studies of low-speed swirling flows by
Bruecker & Althaus (1995), Malkiel et al. (1996) and Mattner, Joubert & Chong
(2002) and in the numerical simulations of Beran (1994), Lopez (1994) and Snyder &
Spall (2000) for incompressible flows. The theoretical studies of Rusak and co-authors
demonstrated the existence of a special mode of an axially symmetric disturbance that
is not limited to the axial-Fourier mode and becomes unstable when the swirl ratio is
above a certain critical level ω1, which is the modified critical swirl of Benjamin (1962)
due to pipe length. This instability mechanism is a result of the interaction between
flow perturbations that are driven upstream by the swirl and the relatively fixed flow
conditions at the pipe inlet. The studies also clarified the relationship between this
instability mode, the axisymmetric vortex breakdown process, and the evolution to
lower energy and stable breakdown states in high-Reynolds-number vortex flows.

In a recent paper, Rusak & Lee (2002) studied the effect of compressibility on the
critical swirl level for breakdown of subsonic vortex flows in a straight circular pipe
of finite length. This work extended the critical-state concept of Benjamin (1962) to
include the influence of Mach number on the flow behaviour. The analysis was based
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on a linearized version of the equations for the motion of a steady axisymmetric
inviscid and compressible swirling flow of a prefect gas. The relationships between
the velocity, density, temperature and pressure perturbations to a base columnar flow
state were derived. An eigenvalue problem was formulated to determine the first
critical level of swirl at which a special mode of a non-columnar small disturbance
may appear on the base flow. It was found that when the characteristic Mach number
of the base flow tends to zero the eigenvalue problem and ω1 are the same as defined
by Wang & Rusak (1996a, 1997a) in their study of incompressible swirling flows
in pipes. As the characteristic Mach number is increased, ω1 increases and the flow
perturbation expands in the radial direction. As the Mach number approaches a
certain limit value related to the core size of the vortex, ω1 reaches very large values
and becomes singular. These results indicated that the axisymmetric breakdown of
high-Reynolds-number compressible vortex flows may be delayed to higher levels of
the swirl ratio with the increase of the flow Mach number. This is similar to results
found in the numerical simulations of Melville (1996) and Herrada et al. (2000).

We analyse in this paper the linear stability of a compressible inviscid axisymmetric
and rotating columnar flow of a perfect gas in a finite-length pipe. In § 2, we assume
the physical model used in the works of Rusak and co-authors. We formulate a
well-posed model of the unsteady motion of swirling flows with boundary conditions
similar to those used in the steady compressible analysis of Rusak & Lee (2002) and
in the incompressible flow analyses of Wang & Rusak (1996a, 1997a, b). We derive
a linearized set of equations for the development of infinitesimal axially symmetric
disturbances imposed on a base compressible rotating columnar flow. Then, we
introduce a general mode of axisymmetric disturbance and obtain an eigenvalue
problem (§ 3). We demonstrate that the critical level of swirl ω1 defined by Rusak &
Lee (2002) is a point of exchange of stability for any swirling flow in a finite-length
pipe (§ 4). When the flow is supercritical, we find an asymptotically stable mode of
axisymmetric disturbance and when the flow is subcritical we find an unstable mode of
axisymmetric disturbance. The results shed more light on the effect of compressibility
on the transition to axisymmetric breakdown (§ 5).

The present work focuses on the stability of compressible vortex flows. It should be
clarified that the thermodynamics of vortex flows is always a matter of difficulty. The
interaction between the velocity and thermodynamic properties is complicated and
governed by, in addition to the momentum equations, the energy and state equations.
Even the continuity and momentum equations contain changes of density that are re-
lated to the velocity perturbations. Moreover, the choice of boundary conditions in the
compressible flow case, specifically the inlet thermodynamic conditions, is not unique
and a certain model has to be assumed, for example, the inlet temperature profile is
fixed. As a result, the stability problem in the compressible case is more involved than
that in the incompressible case and requires a more careful and detailed study. The
generalization of results for compressible flows is not simple or trivial. In fact, unlike
the incompressible flow stability study of Wang & Rusak (1996a) where the perturb-
ation equations reduce to one stability equation, the present work shows that the per-
turbation equations reduce to two stability equations that cannot be further simplified.
Also, the linearized inlet conditions are more complex and affected by Mach number.

2. Mathematical model
An unsteady compressible non-heat conducting inviscid and axisymmetric swirling

flow of a perfect gas is considered in a finite-length pipe of radius r̄t . The pipe
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centreline is the x̄-axis where 0 � x̄ � x0r̄t and the radial distance is r̄ where 0 � r̄ � r̄t .
The flow thermodynamic properties are given by the equation of state:

P̄ = ρ̄RT̄ , (1)

where P̄ , ρ̄ and T̄ are the pressure, density, and temperature, respectively, and R is the
specific gas constant. The compressible flow dynamics (where time is t̄) is described
by the unsteady and axisymmetric continuity, momentum and energy equations

ρ̄ t̄ + (ρ̄ū)r̄ +
ρ̄ū

r̄
+ (ρ̄w̄)x̄ = 0, (2)

ρ̄

(
ūt̄ + ūūr̄ + w̄ūx̄ − v̄2

r̄

)
= −P̄ r̄ , (3)

v̄t̄ + ūv̄r̄ + w̄v̄x̄ +
ūv̄

r̄
= 0, (4)

ρ̄(w̄t̄ + ūw̄r̄ + w̄w̄x̄) = −P̄ x̄ , (5)

ρ̄Cp(T̄ t̄ + ūT̄ r̄ + w̄T̄ x̄) − (P̄ t̄ + ūP̄ r̄ + w̄P̄ x̄) = 0. (6)

These equations construct the relationship between the thermodynamic properties and
the radial, circumferential, and axial velocity components ū, v̄ and w̄, respectively.
Also, Cp is the gas specific heat at a constant pressure process and is assumed
constant, Cp = γR/(γ − 1) where γ is the ratio of specific heats of the perfect gas (for
air at temperatures below 300 K, γ = 1.4, see Thompson 1988, p. 640).

We study the flow dynamics in the finite-length pipe under the following boundary
conditions. We assume a physical model of the problem similar to that of Rusak and
co-authors described in § 1. For all t̄ , we set the symmetry conditions along the pipe
centreline r̄ = 0

ū(̄t, x̄, 0) = 0, v̄(̄t, x̄, 0) = 0, w̄r̄ (̄t, x̄, 0) = 0, T̄ r̄ (̄t, x̄, 0) = 0, P̄ r̄ (̄t, x̄, 0) = 0, (7)

for 0 � x̄ � x0r̄t . Along the pipe wall r̄ = r̄t , the normal (radial) velocity component
vanishes for all t̄ , i.e.

ū(̄t, x̄, r̄t ) = 0, (8)

for 0 � x̄ � x0r̄t . At the pipe inlet x̄ = 0, we prescribe a vortex state that is generated
in front of the pipe and given for all t̄ by

w̄(̄t, 0, r̄) = U0w0

(
r̄

r̄t

)
, v̄(̄t, 0, r̄) = ωU0v0

(
r̄

r̄t

)
,

(9)

η̄(̄t, 0, r̄) =
U0

r̄t

η̄0

(
r̄

r̄t

)
, T̄ (̄t, 0, r̄) = T̄ 0T0

(
r̄

r̄t

)
,

for 0 � r̄ � r̄t . Here, η̄ = ūx̄ −w̄r̄ is the azimuthal vorticity. Also, U0 is the axial speed at
the inlet centreline, ω is the swirl ratio of the incoming flow, and T̄ 0 is the temperature
at the inlet centreline. The inlet flow is characterized by a Mach number M0 = U0/ā0

where ā0 is the isentropic speed of sound at the inlet centreline, ā0 = (γRT̄ 0)
1/2. The

given functions w0, v0, η0, T0 are independent of one another or of the Mach number
and fully define the compressible flow at the inlet. In the present model, we use the
temperature profile T0 to describe the thermodynamic conditions at the inlet. The
pressure and density at the inlet can be determined at every Mach number from
the flow equations. Note that w0r̄ (0) = 0, v0(0) = 0 and T0r̄ (0) = 0 should be used for
symmetry at the inlet centreline. We also consider in the present study the nominal
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case where for all t̄ there is a zero axial gradient of the radial speed along the pipe
inlet and the inlet azimuthal vorticity is fixed, i.e. for all t̄:

η̄0 = −w̄0r̄ or ūx̄ (̄t, 0, r̄) = 0 for every 0 � r̄ � r̄t . (10)

Also, we assume at the inlet centreline that the pressure is fixed for all t̄ , i.e.

P̄ (̄t, 0, 0) = P̄ 0 (11)

is given. No radial velocity and non-reflective conditions on the thermodynamic
properties are assumed along the pipe outlet at x̄ = x0r̄t , i.e. for all t̄:

ū(̄t, x0r̄t , r̄) = 0, P̄ t̄ (̄t, x0r̄t , r̄) + w̄P̄ x̄ (̄t, x0r̄t , r̄) = 0 for 0 � r̄ � r̄t . (12)

These conditions are compatible with the fully developed flow conditions at the pipe
outlet in the incompressible flow problem and are typically used in the study of
compressible flow problems (see Thompson 1987). The boundary conditions (7)–(12)
are similar to those used in compressible flow simulations by Melville (1996), Tromp &
Beran (1996, 1997) and Herrada et al. (2000).

Equations (1)–(6) with boundary conditions (7)–(12) formulate a well-defined
problem to describe the inviscid dynamics of a compressible axisymmetric rotating
flow in a finite-length pipe. We use these equations to study the stability of a columnar
vortex state.

3. Perturbation equations
We consider a base steady, swirling and columnar flow solution of (1)–(12) where

for every Mach number M0 and swirl level ω and for all t̄ and 0 � x̄ � x0r̄t

w̄(̄t, x̄, r̄) = U0w0

(
r̄

r̄t

)
, v̄(̄t, x̄, r̄) = ωU0v0

(
r̄

r̄t

)
, ū(̄t, x̄, r̄) = 0,

T̄ (̄t, x̄, r̄) = T̄ 0T0

(
r̄

r̄t

)
,

P̄ (̄t, x̄, r̄) = P̄ 0P0

(
r̄

r̄t

)
, P0

(
r̄

r̄t

)
= exp

(
γM2

0ω
2

∫ r̄/r̄t

0

v2
0(r̄

∗/r̄t )

(r̄∗/r̄t )T0(r̄∗/r̄t )
d

(
r̄∗

r̄t

))

ρ̄ (̄t, x̄, r̄) = ρ̄0ρ0

(
r̄

r̄t

)
, ρ0

(
r̄

r̄t

)
= P0

(
r̄

r̄t

)/
T0

(
r̄

r̄t

)
, P̄ 0 = ρ̄0RT̄ 0.




(13)

The exponential dependence of P0 is found from substituting (13) into (1) and (3)
and using (1) to express ρ̄ in terms of P̄ and T̄ . This results in an equation for
P0: P0r̄ /P0 = γM2

0ω
2v2

0/(r̄T0), the solution which is given in (13). Note that in the
columnar flow state, only the pressure and density depend on Mach number.

We use t = (U0/r̄t )̄t , r = r̄/r̄t , and x = x̄/r̄t as non-dimensional variables. To study
the stability of the base vortex flow we introduce infinitesimal perturbations to the
base flow variables in the form

ρ̄ = ρ̄0

(
ρ0(r) + γM2

0ερ1(t, x, r) + . . .
)
,

T̄ = T̄ 0

(
T0(r) + γM2

0εT1(t, x, r) + . . .
)
,

P̄ = P̄ 0

(
P0(r) + γM2

0εP1(t, x, r) + . . .
)
,

w̄ = U0(w0(r) + εw1(t, x, r) + . . .),

ū = U0(εu1(t, x, r) + . . .),

v̄ = U0(ωv0(r) + εv1(t, x, r) + . . .),




(14)



30 Z. Rusak and J. H. Lee

where |ε| � 1 and ρ1, T1, P1, u1, v1, w1 are the unsteady disturbances. On substituting
these asymptotic expressions into (1)–(12) and neglecting second-order terms, we then
obtain the base flow relations and the unsteady linearized equations of motion of the
swirling flow:
equation of state

O(1) : P0 = ρ0T0, (15)

O(ε) : P1 = ρ1T0 + ρ0T1; (16)

continuity equation

O(ε) : γM2
0ρ1t +

1

r
(rρ0u1)r +

(
ρ0w1 + γM2

0ρ1w0

)
x

= 0; (17)

r-momentum equation

O(1) : P0r = γM2
0ρ0ω

2 v2
0

r
, (18)

O(ε) : ρ0u1t + ρ0w0u1x − 2

r
ωv0ρ0v1 − γM2

0ω
2 v2

0

r
ρ1 = −P1r ; (19)

x-momentum equation

O(ε) : ρ0w1t + ρ0w0ru1 + ρ0w0w1x = −P1x; (20)

θ-momentum equation

O(ε) : v1t + ω
1

r
(rv0)ru1 + w0v1x = 0; (21)

energy equation

O(ε) :
γ

γ − 1

[
ρ0u1T0r + γM2

0 (ρ0T1t + ρ0w0T1x)
]

−
[
u1P0r + γM2

0 (P1t + w0P1x)
]

= 0;

(22)

where the relation Cp/R = γ /(γ − 1) has been used. According to (7)–(12) and
asymptotic expansions (14), equations (15)–(22) are subjected to the following
boundary conditions. For all t , along the pipe centreline r = 0:

u1(t, x, 0) = v1(t, x, 0) = w1r (t, x, 0) = T1r (t, x, 0) = P1r (t, x, 0) = 0 for 0 � x � x0,

(23)

along the pipe wall r = 1:

u1(t, x, 1) = 0 for 0 � x � x0, (24)

and at the pipe inlet x = 0:

w1(t, 0, r) = v1(t, 0, r) = u1x(t, 0, r) = T1(t, 0, r) = 0 for 0 � r � 1. (25)

Note that (16), (19) and (25) result for all t in:

P1(t, 0, r) = ρ1(t, 0, r)T0(r),

ρ0(r)u1t (t, 0, r) − γM2
0ω

2 v2
0(r)

rT0(r)
P1(t, 0, r) = −P1r (t, 0, r) for 0 � r � 1 (26)

with P1(t, 0, 0) = 0. At the pipe outlet x = x0, we set for all t:

u1(t, x0, r) = 0, P1t (t, x0, r) + w0(r)P1x(t, x0, r) = 0 for 0 � r � 1. (27)
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We define y = r2/2 where 0 � y � 1/2. From the linearized continuity equation (17),
a function ψ1(t, x, y) can be defined such that:

ρ0u1 = − ψ1x√
2y

, ρ0w1 = ψ1y − γM2
0

(
w0ρ1 +

∫ x

0

ρ1t (t, x
′, y) dx ′

)
. (28)

To fix the function ψ1(t, x, y), we set for all t: ψ1(t, 0, 0) = 0.
Let K = rv be the circulation function where K = ωK0(y) + εK1 + . . . , K0(y) =

(2y)1/2v0 is the base flow circulation function, and K1(t, x, y) is the circulation unsteady
disturbance. The linearized θ-momentum equation (21) can be changed to:

K1t + ω
√

2yu1K0y + w0K1x = 0. (29)

Elimination of pressure from (19) and (20) by cross-differentiation in terms of x and
y, respectively, followed by subtraction gives a relationship between ψ1, K1x and ρ1.
Solving it for K1x and substituting in (29) results in additional expression for K1t .
Elimination of K1 by cross-differentiation in terms of t and x, respectively, followed
by subtraction, multiplying by ωK0ρ0/(2y2w0), and differentiation with respect to x

gives (as shown in Appendix A)†,

2

(
ψ1xx

2y
+ ψ1yy

)
xxt

+
1

w0

(
ψ1xx

2y
+ ψ1yy

)
xtt

+ w0

(
ψ1xx

2y
+ ψ1yy

)
xxx

+

(
ω2K0K0y

2y2w0

− w0yy

)
ψ1xxx − w0yy

w0

ψ1xxt

= − γM2
0

[
ω2K2

0

4y2

(
ρ1xxx +

ρ1xxt

w0

)
− 4w0yρ1xxt − 3ρ1xytt − 3w0ρ1xxyt

− 1

w0

ρ1yttt − 2w0y

w0

ρ1xtt − 2w0w0yρ1xxx − w2
0ρ1xxxy

]
. (30)

Equation (30) presents one relationship between ψ1 and ρ1. Another relationship
between these disturbances is now found from the linearized state and energy
equations (16) and (22). Differentiating (22) with respect to x, substituting ρ0T1 =
P1−ρ1T0, using (20) to express P1xt and P1xx , multiplying by −1/w0, and differentiating
with respect to x gives (as shown in Appendix A),

γM2
0

[(
T0

w0

− 3M2
0w0

)
ρ1xxt +

(
T0 − M2

0w
2
0

)
ρ1xxx − 3M2

0ρ1xtt − M2
0

w0

ρ1t t t

]

=

(
M2

0w0y − T0y

w0

+
γ − 1

γ

P0y

ρ0w0

)
ψ1xxx − M2

0w0ψ1xxxy − M2
0

w0

ψ1xytt

+ M2
0

w0y

w0

ψ1xxt − 2M2
0ψ1xxyt . (31)

Equations (30) and (31) describe the linearized dynamics of the disturbances ψ1

and ρ1. For a well-defined problem, these equations must be subjected for all t to
two conditions on ψ1 and no condition on ρ1 along the pipe centreline and wall and
five conditions on ψ1 and three conditions on ρ1 along the pipe inlet and outlet. These
conditions are derived from the boundary conditions (23)–(27), as follows.

† Appendices A–D are available as a supplement to the online version of this paper or from the
authors or the JFM Editorial office.
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From (23) and (24), for all t , along the pipe centreline r =0:

ψ1(t, x, 0) = ψ1(t, 0, 0) = 0 for 0 � x � x0, (32)

and along the pipe wall r = 1:

ψ1(t, x, 1/2) = ψ1(t, 0, 1/2) for 0 � x � x0, (33)

where ψ1(t, 0, 1/2) has to be determined. The inlet conditions (25) show that for all t

ψ1xx(t, 0, y) = 0 for 0 � y � 1/2. (34)

Also, from (25), (26) and (28), we find along the pipe inlet that for all t and 0 �y �1/2

γM2
0w0ρ1(t, 0, y) = ψ1y(t, 0, y),

ψ1xt (t, 0, y)

2y
= T0ρ1y(t, 0, y) + T0yρ1(t, 0, y) − γM2

0ω
2 K2

0

4y2
ρ1(t, 0, y),


 (35)

with conditions: ψ1(t, 0, 0) = 0, ρ1(t, 0, 0) = 0.

Conditions in (35) result for all t and 0 � y � 1/2 in(
T0

w0

ψ1y(t, 0, y)

)
y

= γM2
0

(
ψ1xt (t, 0, y)

2y
+ ω2 K2

0

4y2w0

ψ1y(t, 0, y)

)
, (36)

with conditions: ψ1(t, 0, 0) = ψ1y(t, 0, 0) = 0,

which can replace the second condition in (35). Condition (36) describes a certain
relationship between ψ1 and ψ1x at the pipe inlet. Note that in the stability problem of
an incompressible vortex flow (where M0 = 0) or in the problem of the linearized steady
compressible vortex flow (where ψ1xt =0), the condition (36) reduces to ψ1(t, 0, y) = 0
along the pipe inlet 0 � y � 1/2 that was used in the analyses of Wang & Rusak
(1996a) and Rusak & Lee (2002). The present condition (36) for the stability of the
compressible vortex flow adds a special difficulty that was not present in any of
the previous studies, i.e. the distribution of ψ1(t, 0, y) for 0 � y � 1/2 has to be
determined as part of the solution of the flow linearized dynamics.

Three additional inlet conditions result from (25) and (A 2), (A 3) and (A 6), i.e. for
all t and 0 � y � 1/2:

ψ1xxx(t, 0, y)

2y
+ ψ1xyy(t, 0, y) +

(
ω2K0K0y

2y2w2
0

− w0yy

w0

)
ψ1x(t, 0, y) +

ψ1yyt (t, 0, y)

w0

= −γM2
0

[(
ω2K2

0

4y2w0

− 2w0y

)
ρ1x(t, 0, y) − w0ρ1xy(t, 0, y)

− 2
w0y

w0

ρ1t (t, 0, y) − 2ρ1yt (t, 0, y)

]
, (37)

ψ1xxxt (t, 0, y)

yw0

+
2ψ1xyyt (t, 0, y)

w0

+
1

w2
0

ψ1yytt (t, 0, y) +
ψ1xxxx(t, 0, y)

2y
− w0yy

w2
0

ψ1xt (t, 0, y)

= − γM2
0

w0

[
ω2K2

0

4y2

(
ρ1xx(t, 0, y) +

ρ1xt (t, 0, y)

w0

)
− 4w0yρ1xt (t, 0, y) − 3ρ1ytt (t, 0, y)

− 3w0ρ1xyt (t, 0, y) − 2w0y

w0

ρ1t t (t, 0, y) − 2w0w0yρ1xx(t, 0, y) − w2
0ρ1xxy(t, 0, y)

]
,

(38)
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γ

[(
T0

w0

− 3M2
0w0

)
ρ1xt (t, 0, y) +

(
T0 − M2

0w
2
0

)
ρ1xx(t, 0, y) − 3M2

0ρ1t t (t, 0, y)

]

=
w0y

w0

ψ1xt (t, 0, y) − 1

w0

ψ1ytt (t, 0, y) − 2ψ1xyt (t, 0, y). (39)

From (27), the outlet conditions for all t and 0 � y � 1/2 are:

ψ1x(t, x0, y) = 0, (40)

ρ1t (t, x0, y) + w0ρ1x(t, x0, y) = 0. (41)

In summary, (30) and (31) are subjected to (32) and (33) which describe the two
conditions on ψ1 along the pipe centreline and wall, (34), (36), (37), (38) and (40)
which are the five conditions on ψ1 along the pipe inlet and outlet, and (35), (39) and
(41) which are the three conditions on ρ1 along the pipe inlet and outlet.

4. Mode analysis
We consider a suitable general mode analysis of (30), (31) and (32)–(41) of the form

ψ1 = φ̃(x, y)eσ t , ρ1 = ρ̃(x, y)eσ t . (42)

Here, in the general case, the rate σ is a complex number and φ̃ and ρ̃ are complex
functions. Substituting (42) into (30) and (31) gives two equations for the solution of
φ̃ and ρ̃:

2σ

(
φ̃xx

2y
+ φ̃yy

)
xx

+
σ 2

w0

(
φ̃xx

2y
+ φ̃yy

)
x

+ w0

(
φ̃xx

2y
+ φ̃yy

)
xxx

+

(
ω2K0K0y

2y2w0

− w0yy

)
φ̃xxx − σ

w0yy

w0

φ̃xx

= −γM2
0

[
ω2K2

0

4y2

(
ρ̃xxx + σ

ρ̃xx

w0

)
− 4σw0yρ̃xx − 3σ 2ρ̃xy

− 3σw0ρ̃xxy − σ 3 ρ̃y

w0

− σ 2 2w0y

w0

ρ̃x − 2w0w0yρ̃xxx − w2
0ρ̃xxxy

]
= 0, (43)

γM2
0

[
σ

(
T0

w0

− 3M2
0w0

)
ρ̃xx + (T0 − M2

0w
2
0)ρ̃xxx − 3σ 2M2

0 ρ̃x − σ 3 M2
0

w0

ρ̃

]

=

(
M2

0w0y − T0y

w0

+
γ − 1

γ

P0y

ρ0w0

)
φ̃xxx − M2

0w0φ̃xxxy

− σ 2 M2
0

w0

φ̃xy + σM2
0

w0y

w0

φ̃xx − 2σM2
0 φ̃xxy. (44)

The boundary conditions for these equations are derived from (32)–(41) by replacing
ψ1 with φ̃ and derivatives with t by respective powers of σ (as shown in Appendix B).

Equations (43) and (44) constitute an eigenvalue problem for the solution of σ

φ̃ and ρ̃ for all swirl levels ω. For each ω the problem has an infinite number of
eigenvalues σ .

Note that for the case where σ = 0, the inlet conditions (B 3) and (B 4) can be
solved and give φ̃(0, y) = 0 and ρ̃(0, y) = 0 for 0 � y � 1/2. We use this result in § 4.1
when we study the case where σ = 0 (a neutral mode).

Reduction of (43) and (44) into one equation for φ̃ is complicated and requires
the use of higher-order derivatives in x and y. Since we are specifically interested
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in investigating the stability of the base compressible vortex flow around its critical
state, we use the following asymptotic mode analysis.

4.1. The neutral mode

We first concentrate on the case where σ = 0 (a neutral mode). Then, the system (43)
and (44) reduces to[
φ̃xx

2y
+ φ̃yy +

(
ω2K0K0y

2y2w2
0

− w0yy

w0

)
φ̃ + γM2

0

(
ω2K2

0

4y2w0

ρ̃ − 2w0yρ̃ − w0ρ̃y

)]
xxx

= 0, (45)

γM2
0 ρ̃xxx =

1(
T0 − M2

0w
2
0

) [(
M2

0w0y − T0y

w0

+
γ − 1

γ

P0y

ρ0w0

)
φ̃ − M2

0w0φ̃y

]
xxx

, (46)

with boundary conditions

φ̃(x, 0) = 0, φ̃(x, 1/2) = φ̃(0, 1/2) = 0, (47)

for 0 � x � x0 and

φ̃(0, y) = 0, φ̃xx(0, y) = 0, φ̃xxxx(0, y) = 0, φ̃x(x0, y) = 0, (48)

φ̃xxx(0, y)

2y
+ φ̃xyy(0, y) +

(
ω2K0K0y

2y2w2
0

− w0yy

w0

)
φ̃x(0, y)

= −γM2
0

[(
ω2K2

0

4y2w0

− 2w0y

)
ρ̃x(0, y) − w0ρ̃xy(0, y)

]
, (49)

ρ̃(0, y) = 0, ρ̃xx(0, y) = 0, ρ̃x(x0, y) = 0 (50)

for 0 � y � 1/2. Substituting (46) into (45) followed by three integrations with respect
to x and using (47)–(50) gives

L(φ̃; Ω) ≡ φ̃yy +
φ̃xx

2y

T0 − M2
0w

2
0

T0

+ φ̃yQ(y; Ω) + φ̃R(y; Ω) = 0 (51)

where

Q(y; Ω) = −γM2
0ΩK2

0

4y2T0

+

(
T0 − 2M2

0w
2
0

)
T0y + 2M2

0w0w0yT0(
T0 − M2

0w
2
0

)
T0

,

R(y; Ω) =

(
ΩK0K0y

2y2w2
0

− w0yy

w0

)
T0 − M2

0w
2
0

T0

+
ΩK2

0

4y2w2
0T0

(
M2

0w0w0y − T0y + (γ − 1)M2
0

ΩK2
0

4y2

)

− T0 − M2
0w

2
0

w0T0

(
w0

M2
0w0w0y − T0y + (γ − 1)M2

0ΩK2
0/(4y2)

T0 − M2
0w

2
0

)
y

with boundary conditions

φ̃(x, 0) = 0, φ̃(x, 1/2) = 0 for 0 � x � x0, (52)

φ̃(0, y) = 0, φ̃x(x0, y) = 0 for 0 � y � 1/2. (53)

Here, Ω = ω2. Comparing (51)–(53) with equations (43)–(45) in Rusak & Lee (2002),
we observe that when σ = 0, a neutrally stable mode of disturbance exists at the
specific swirl level ω = ω1 that has been defined in Rusak & Lee (2002) as ‘the critical
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swirl ratio for a compressible vortex flow in a finite-length pipe’. The solution of the
eigenvalue problem (51)–(53) is

φ̃ = ψ1c(x, y) = Φ(y) sin

(
πx

2x0

)
(54)

where Φ is the eigenfunction that corresponds to the critical state at the first eigenvalue
Ω1 = ω2

1 and both are found from the solution of:

Φyy + ΦyQ(y; Ω1) + ΦR1(y; Ω1) = 0, (55)

where

R1(y; Ω1) = R(y; Ω1) − π2

8yx2
0

T0 − M2
0w

2
0

T0

,

with boundary conditions:

Φ(0) = Φ(1/2) = 0. (56)

The corresponding critical density perturbation is

ρ̃ = ρ1c(x, y) = S(y) sin

(
πx

2x0

)
, (57)

where

S(y) =
1

γM2
0w0

(
T0 − M2

0w
2
0

) [(
M2

0w0w0y − T0y + (γ − 1)M2
0

Ω1K
2
0

4y2

)
Φ − M2

0w
2
0Φy

]
.

Results of calculations of the critical swirl ω1 and the eigenfunction Φ(y) according
to (55) and (56) for a solid-body rotation and for a Burgers vortex at various subsonic
Mach numbers and vortex core radii are shown in Rusak & Lee (2002). Note that
σ = 0 also occurs at higher eigenvalues ω2, ω3, . . . of the problem (55) and (56) which
are greater than ω1, but these are beyond the interest of the present analysis.

Note that, unlike the incompressible case, in the compressible case the problem
(55)–(56) is not self-adjoint. The adjoint function of ψ1c is given by:

ψ∗
1c(x, y) = Φ∗(y) sin

(
πx

2x0

)
, (58)

where Φ∗ is the adjoint eigenfunction that corresponds to the critical state at the first
eigenvalue Ω1 =ω2

1 and is computed from the solution of:

Φ∗
yy − Φ∗

yQ(y; Ω1) + Φ∗[R1(y; Ω1) − Qy(y; Ω1)] = 0, (59)

with boundary conditions:

Φ∗(0) = Φ∗(1/2) = 0.

Figure 1 shows for various Mach numbers M0 the computed critical function Φ(y)
and its adjoint function Φ∗(y) for the case of a solid-body rotation where w0(y) = 1,
v0 = (2y)1/2, and x0 = 60. It can be seen that the adjoint function Φ∗ is close to the
eigenfunction Φ when M0 is sufficiently small (0 � M0 � 0.3) but as M0 increases the
two functions are different.

4.2. Stability analysis around the critical state

In the previous section, we have shown that the critical state for a compressible
vortex at the swirl level ω = ω1 is also a state with a neutral mode of disturbance. We
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Figure 1. The computed critical function Φ(y) and its adjoint function Φ∗(y) for the case of
a solid-body rotation in a pipe with x0 = 60 at various Mach numbers.

study now the stability of the compressible vortex at swirl levels around ω1 as it is
described by (43) and (44). Let ω2 = Ω1 + �Ω . It is expected that as �Ω → 0 also
σ = σR + iσI → 0. Here, i is the imaginary unit, σR and iσI are the real and imaginary
parts of σ , both are functions of �Ω and tend to zero as �Ω → 0.

We consider the following asymptotic expansions for φ̃ and ρ̃ in the limit ω → ω1:

φ̃ = ψ1c(x, y) + εRφR(x, y) + iεIφI (x, y) + . . . ,

ρ̃ = ρ1c(x, y) + εRρR(x, y) + iεIρI (x, y) + . . . .

}
(60)

Here, εR , and εI are real functions of �Ω and tend to zero as �Ω → 0. The functions
φR , φI , ρR and ρI are real functions. We first concentrate on the imaginary parts
of (43) and (44). Collecting terms of the orders εI , σI , εIσR, εI�Ω and neglecting
terms of the orders O(σ 2

R, σ 2
I , σRσI , σI εR, σI�Ω) and higher gives (as shown in

Appendix C),

εI [L(φI (x, y); Ω1) − L(φI (0, y); Ω1)] − σI

∫ x

0

L1[ψ1c(x
′, y), ρ1c(x

′, y); Ω1] dx ′

+ εIσR

∫ x

0

L2[φI (x
′, y), ρI (x

′, y); Ω1] dx ′ + εI�Ω[L3(φI (x, y); ρI (x, y); Ω1)

− L3(φI (0, y); ρI (0, y); Ω1)] = 0. (61)

The functional L(φI (x, y); Ω1) in (61) is the same as defined in (51). In the functional
L(φI (0, y); Ω1), the condition φIxx(0, y) = 0 is used. The functions L1, L2 and L3

in (61) can be presented by detailed expressions, but these are not needed here for
the following calculation (details of L1 and L3 are given later in (64) and (65)). The
multiplication of (61) by the adjoint function ψ∗

1c(x, y) (given by (58)–(59)) and the
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integration over the flow domain 0 � x � x0 and 0 � y � 1/2 results in

εI

∫ x0

0

∫ 1/2

0

[L(φI (x, y); Ω1) − L(φI (0, y); Ω1)] ψ∗
1c(x, y) dy dx

+ σI

∫ x0

0

∫ 1/2

0

[∫ x

0

L1(ψ1c(x
′, y), ρ1c(x

′, y); Ω1) dx ′
]

ψ∗
1c(x, y) dy dx

+ εIσR

∫ x0

0

∫ 1/2

0

[∫ x

0

L2(φI (x
′, y), ρI (x

′, y); Ω1) dx ′
]

ψ∗
1c(x, y) dy dx

+ εI�Ω

∫ x0

0

∫ 1/2

0

[L3(φI (x, y), ρI (x, y); Ω1)

− L3(φI (0, y), ρI (0, y); Ω1)]ψ
∗
1c(x, y) dy dx = 0. (62)

Calculation shows that the first term in (62) vanishes. Therefore, we find from (62)
that σI =O(εIσR, εI�Ω). This means that |σI | � |σR| and |σI | � |�Ω |. Moreover,
this conclusion for the compressible flow case matches a similar result found in the
stability analysis of incompressible flow by Wang & Rusak (1996a). Note that the
stability analysis of Gallaire & Chomaz (2001), who extended the work of Wang &
Rusak (1996a), shows by numerical computations of the incompressible flow problem
that σI = 0 and εI = 0 for all eigenvalues σ at every swirl level ω. A similar conclusion
is drawn from the flow simulations of Rusak et al. (1998a). Although not needed for
the following analysis, it is strongly expected that σI = 0 and εI = 0 also in our case.

We study now the equations resulting from the real parts of (43)–(44). Note that
according to the result of the previous paragraph, terms of the order σI εI are much
smaller than terms of the order σR and �Ω and may be neglected. Using (60) in (43)
and (44) gives (as shown in Appendix D),

εR[L(φR(x, y); Ω1) − L(φR(0, y); Ω1)] − σR

∫ x

0

L1(ψ1c(x
′, y), ρ1c(x

′, y); Ω1) dx ′

+ �ΩL3(ψ1c(x, y), ρ1c(x, y); Ω1) = 0. (63)

The functional L(φR(x, y); Ω1) in (63) is the same as defined in (51). In the functional
L(φR(0, y); Ω1), the condition φRxx(0, y) = 0 is used. The functionals L1 and L3 in
(63) are given by

L1(ψ1c(x, y), ρ1c(x, y); Ω1)

= −T0 − M2
0w

2
0

T0

{
2

w0

(
ψ1cxx

2y
+ ψ1cyy

)
− w0yy

w2
0

ψ1c

+ γM2
0

[(
Ω1K

2
0

4y2w2
0

− 4w0y

w0

)
ρ1c − 3ρ1cy

]}

− γM2
0

{
Ω1K

2
0

4y2w0T0

[
2M2

0w0S(y) +
T0 − 3M2

0w
2
0

w0

ρ1c

+
w0y

γw0

(Φ(y) − ψ1c) − 2

γ
(Φy(y) − ψ1cy)

]

− T0 − M2
0w

2
0

w0T0

[
w2

0

T0 − M2
0w

2
0

(
2M2

0w0S(y) +
T0 − 3M2

0w
2
0

w0

ρ1c

+
w0y

γw0

(Φ(y) − ψ1c) − 2

γ
(Φy(y) − ψ1cy)

)]
y

}
, (64)
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L3(ψ1c(x, y), ρ1c(x, y); Ω1) =
T0 − M2

0w
2
0

T0

K0K0y

2y2w2
0

ψ1c + γM2
0

T0 − M2
0w

2
0

T0

{
K2

0

4y2w0

ρ1c

+
(γ − 1)

γ

K2
0

4y2w0

(
T0 − M2

0w
2
0

) (
Ω1K

2
0

4y2w0

− 2w0y

)
ψ1c

− (γ − 1)

γ
w0

[
K2

0

4y2w0

(
T0 − M2

0w
2
0

)ψ1c

]
y

}
. (65)

Multiplication of (63) by the adjoint function ψ∗
1c(x, y) and the integration over the

flow domain 0 � x � x0 and 0 � y � 1/2 results in

εR

∫ x0

0

∫ 1/2

0

[L(φR(x, y); Ω1) − L(φR(0, y); Ω1)] ψ∗
1c(x, y) dy dx

− σR

∫ x0

0

∫ 1/2

0

[∫ x

0

L1(ψ1c(x
′, y), ρ1c(x

′, y); Ω1) dx ′
]

ψ∗
1c(x, y) dy dx

+�Ω

∫ x0

0

∫ 1/2

0

[L3(ψ1c(x, y), ρ1c(x, y); Ω1)] ψ∗
1c(x, y) dy dx = 0. (66)

Calculation shows that the first term in (66) vanishes. Therefore, we find from (66)
that σR is given by

σR

�Ω
=

∫ x0

0

∫ 1/2

0

L3(ψ1c(x, y), ρ1c(x, y); Ω1)ψ
∗
1c(x, y) dy dx∫ x0

0

∫ 1/2

0

[∫ x

0

L1(ψ1c(x
′, y), ρ1c(x

′, y); Ω1) dx ′
]

ψ∗
1c(x, y) dy dx

. (67)

This result shows a linear relationship between the real part of the growth rate of
the perturbation and the change of swirl ratio around the critical level ω1. It can be
seen from (67) that as M0 tends to zero and T0 = 1, the stability relationship of Wang &
Rusak (1996a) for incompressible vortex flows is recovered. Also, it can be shown
for model vortices such as the solid-body rotation, the Rankine vortex, the Burgers
vortex, or the Q-vortex and for all subsonic Mach numbers that the ratio on the
right-hand side of (67) is positive. This result shows that σR < 0 when �Ω < 0 and
for compressible supercritical swirling flows with ω <ω1, the mode of disturbance
is asymptotically stable. As �Ω tends to 0 also σR tends to 0 and the mode of
disturbance is neutrally stable when ω = ω1 (the critical level). However, σR > 0
when �Ω > 0 and therefore compressible subcritical swirling flows with ω > ω1

are unstable. This proves that the critical swirl ratio for a compressible vortex flow
in a finite-length pipe is a point of exchange of stability for compressible columnar
swirling flows.

To demonstrate the change of σR/�Ω with M0 we study the case where the
inlet axial velocity and temperature profiles are uniform, w0 = T0 = 1, and the
circumferential velocity is given by a solid-body rotation profile, K0 = 2y. Then,
(67) results in

σR

�Ω
=

π2

4x0

∫ 1/2

0

Φ∗I3 dy∫ 1/2

0

Φ∗I1 dy

(68)
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Figure 2. The growth-rate ratio σR/�Ω and the critical swirl number ω1 as function of
Mach number for a solid-body rotation flow in a pipe with x0 = 60.

where

I1 =

[
π2

4x2
0y

M2
0

(
M2

0 − 2
)

+
4

y

(
1 + M2

0 − M4
0

)
Ω1 + 2(γ − 1)M4

0Ω
2
1

]
Φ

+ 2γM2
0

(
1 − M2

0

)
Ω1Φy,

I3 = 2

[(
1 − M2

0

)
y

+ (γ − 1)M2
0Ω1

]
Φ − γM2

0Φy.

We use results for ω1 and Φ(y) in figures 1 and 2 in Rusak & Lee (2002) and results
for Φ∗(y) in figure 1 to compute σR/�Ω at various Mach numbers, see computed
results in figure 2. It can be seen that the growth rate ratio σR/�Ω is positive for all
Mach numbers, but decreases as Mach number M0 is increased. This ratio vanishes at
the limit Mach number M0 limit ∼ 0.925 at which the critical swirl ω1 tends to infinity.

5. Conclusions
The linear stability of a compressible inviscid axisymmetric and rotating columnar

flow of a prefect gas in a finite-length straight circular pipe can be investigated. This
work extends the analysis of Wang & Rusak (1996a) to include the influence of Mach
number on the flow dynamics. A well-posed model of the unsteady motion of a
swirling flow, with inlet and outlet conditions that may reflect the physical situation,
is formulated. The linearized equations of motion for the evolution of infinitesimal
axially symmetric disturbances is derived. A general mode of disturbance, that is
not limited to the axial-Fourier mode, is introduced and an eigenvalue problem is
developed. It is found that a neutral mode of disturbance exists at ‘the critical swirl
ratio for a compressible vortex flow’ defined by Rusak & Lee (2002). The flow changes
its stability characteristics as the swirl ratio increases across this critical level. When
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the swirl ratio is below the critical level (supercritical flow), an asymptotically stable
mode is found and, when it is above the critical level (subcritical flow), an unstable
mode of disturbance may develop. This result cannot be predicted by any of the
previous stability criteria. When the characteristic Mach number of the base flow
tends to zero, the results are the same as found for incompressible swirling flows in
pipes. The growth rate ratio σR/�Ω is positive for all Mach numbers, but decreases
as Mach number M0 is increased. This ratio vanishes at the limit Mach number at
which the critical swirl ω1 tends to infinity. These results match the conclutions from
the simulations of Melville (1996) and Herrada et al. (2000).

The results of this paper show that the exchange of stability at swirl levels around
the critical state found in incompressible vortex flows also dominates the dynamics of
compressible swirling flows. The instability mechanism is again characterized by the
travel of a certain mode of azimuthal vorticity disturbances as function of the swirl
level ω of the incoming flow to the pipe. These disturbances can move upstream and
their speed of motion grows with ω. When ω is less than ω1 the azimuthal vorticity
disturbances have a speed less than the axial speed of the incoming flow and, therefore,
are washed out from the pipe and the base columnar flow is asymptotically stable. At
ω = ω1, there is a critical balance between the speed of the vorticity disturbances trying
to move upstream and the axial flow entering the pipe and a neutrally stable mode
of disturbance exists. When ω is greater than ω1 the azimuthal vorticity disturbances
are able to move upstream, but are blocked by the relatively fixed conditions of the
axial and circumferential speeds at the pipe inlet, which are induced by the vortex
generator ahead of the pipe. Therefore, these disturbances are trapped, accumulate,
and initiate an instability process. The work of Wang & Rusak (1997a) showed that
this instability mode is related to the vortex breakdown process in incompressible
swirling flows. It is strongly expected that a similar situation occurs in compressible
swirling flows.

The present paper and Rusak & Lee (2002) also show that, in subsonic vortex
flows, the compressibility effects increase the critical swirl to higher values as well as
reduce the absolute value of growth rate of the special mode of disturbances. The
compressibility effects may be explained by the circumferential component of the
vorticity transport equation for an unsteady axisymmetric compressible and inviscid
flow (it can be derived in a similar way to that presented in Rusak & Lee (2002,
pp. 316–317):(

−χ̄

ρ̄

)
t̄

+ w̄

(
−χ̄

ρ̄

)
x̄

+ ū

(
−χ̄

ρ̄

)
r̄

=
2K̄K̄r̄ ū

ρ̄w̄r̄4
+

K̄2

ρ̄r̄4

T̄ x̄

T̄
+

1

ρ̄T̄ r̄
(T̄ r̄ (w̄t̄ + ūw̄r̄ + w̄w̄x̄) − T̄ x̄(ūt̄ + ūūr̄ + w̄ūx̄)), (69)

where χ̄ = η̄/r̄ and we denote as η̄ the azimuthal component of the vorticity. Equation
(69) shows that the change in time and the convection of the property (−χ̄/ρ̄) is
balanced by the stretching effect (first term on the right-hand side of (69)), baroclinic
effects resulting from the interaction between the swirl, density and axial temperature
gradient (the second term), and baroclinic effects resulting from the interaction
between the radial and axial speeds, density and temperature gradients (the third
term). When (14) is used and T0(r) = 1 is used, it can be shown that the third term
of the right-hand side of (69) is of higher order and may be neglected. Then, the first
and second terms show that the change of density with the increase of Mach number
may affect the motion of the azimuthal vorticity disturbance and the swirl level for
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a critical balance. In the case of a flow perturbation with ū > 0, the present analysis
shows that a related increase in temperature around the pipe centreline with T̄ x̄ > 0
and in density ρ̄. These changes increase with the flow Mach number and reduce
the size of the stretching term in (69) as Mach number is increased. Therefore, the
resistance to the motion of the azimuthal vorticity disturbance is reduced with the
increase of Mach number and as a result the growth-rate ratio σR/�Ω decreases with
M0 and a higher level of swirl is needed to create a critical balance. The results (67),
(68) and figure 2 and the computed examples in Rusak & Lee (2002) demonstrate
this fundamental nature of compressible vortex flows.

Equation (69) also shows that when the perturbations are sufficiently small, the
x-derivative of temperature dominates the evolution of the azimuthal vorticity,
whereas the r-derivative of temperature appears only in higher-order terms. Therefore,
the present linear stability results are not limited to the isothermal constant inlet
temperature profile that is used in the example shown above. These results also hold
for realistic inlet temperature profiles such as monotonically increasing or decreasing
with r that have small deviations from the isothermal state. However, it is expected
that when the perturbations grow, the r-derivative of temperature in (69) also becomes
important and affects the global dynamics of the flow and transition to breakdown.
Then, the nature of the inlet temperature profile may be important and result in a
complicated behaviour that should be further analysed by global analysis techniques
and numerical simulations.

The present work together with Rusak & Lee (2002) also demonstrate that
compressible vortex flows are relatively more stable than incompressible vortex
flows at the same incoming flow swirl ratio, specifically for swirl levels where
ω1M0 = 0 � ω <ω1M0>0. Therefore, we find that the axisymmetric breakdown of high-
Reynolds-number compressible vortex flows may be delayed to higher swirl ratios
with the increase of the incoming flow Mach number.

This research was carried out with the support of the National Science Foundation
under Grant CTS-9804745.
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